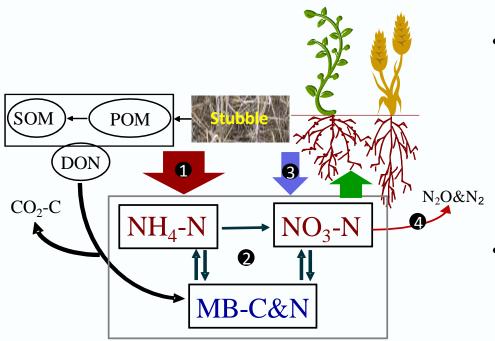


N cycling in Stubble retained systems

Gupta V, McBeath T, Kirkegaard J, Richardson A, Sanderman J, Llewelyn, R. CSIRO Adelaide and Canberra

CSIRO AGRICULTURE www.csiro.au

Stasia Kroker, Steve Szarvas, Drew Ernakovich Bill Davoren, Mel Bullock, Claire Browne, Verburg K, Wang E



N cycling in agricultural soils: Processes, Factors and Prediction

- Biological processes that influence soil plant available N levels in cropping soils:
 - 1. Decomposition/Mineralization
 - 2. Microbial turnover
 - 3. N fixation
 - 4. N losses
- Factors
 - Soil and Crop type
 - Management
 - Season

N supply potential: Mineral N at sowing, N mineralization in-crop N immobilization potential: N tie-up by microorganisms Biological value of stubble: Stubble as a source of C and nutrients for microbes

Microbial Biomass and N mineralization and supply potential 2014 sowing

Karoonda Sand

Horsham Clay

Temora Red brown earth

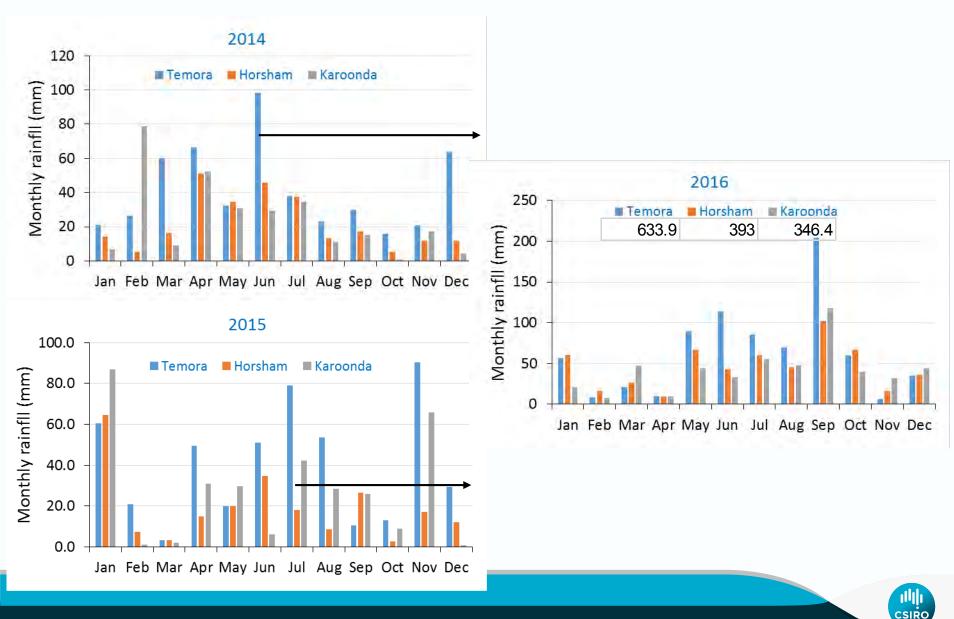
Location	MB-C	MB-N	DOC	Min N	N Supply potential
					mg N / kg soil
	μg /g	Dsoil	µg C/gDsoil	µg N/gDsoil	(crop season)*
Karoonda	138 + 11	20 + 2	63 + 5	9.1 + 1.3	19 + 1.6
Horsham	546 + 2	78 + 1	241 + 7	20.6 + 1.3	52.6 + 3.2
Temora	465 + 37	66 + 5	225 + 6	35.5 + 0.1	84.0 + 2.0

Fate of stubble and soil organic nitrogen as influenced by carbon availability in cereal stubble retained systems

2014 – Grow ¹⁵N labelled wheat

¹⁵N Urea

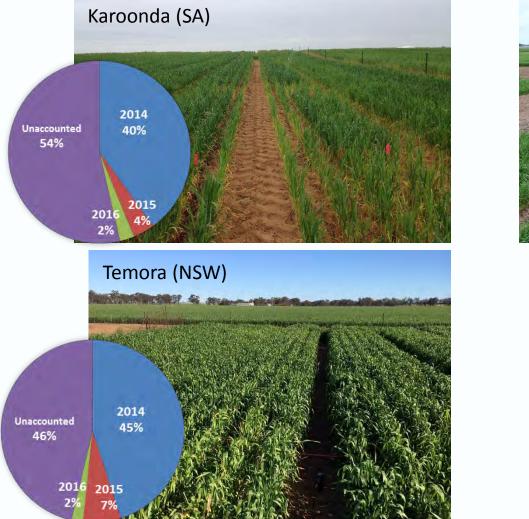
Horsham (Vic)

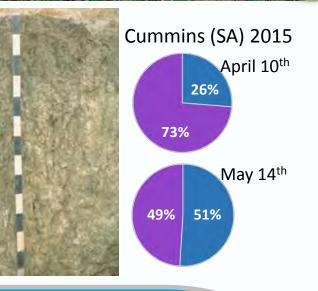


Temora (NSW)

Rainfall distribution during 2014 - 16

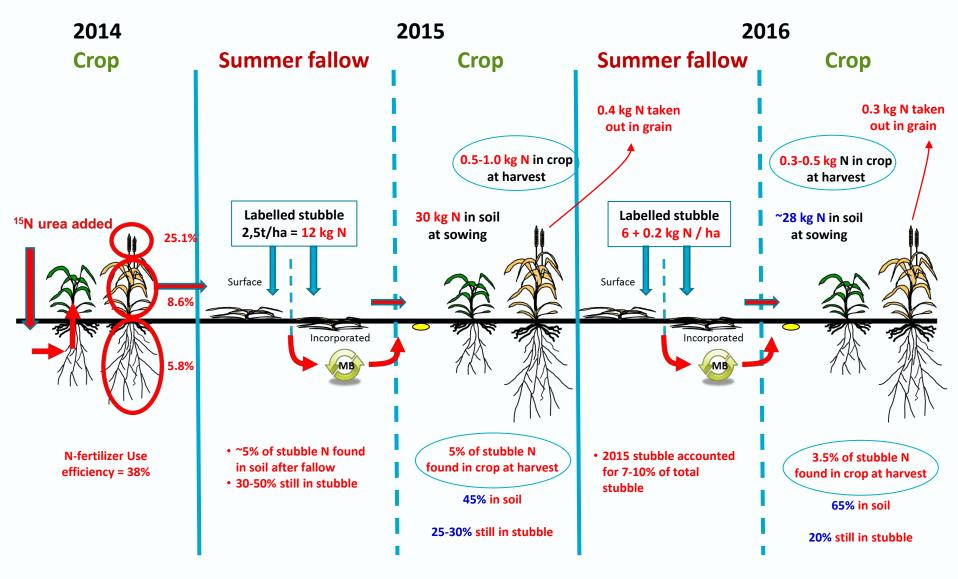
Karoonda: Soil and plant N traced from 2014 to 2016 Mallee sand

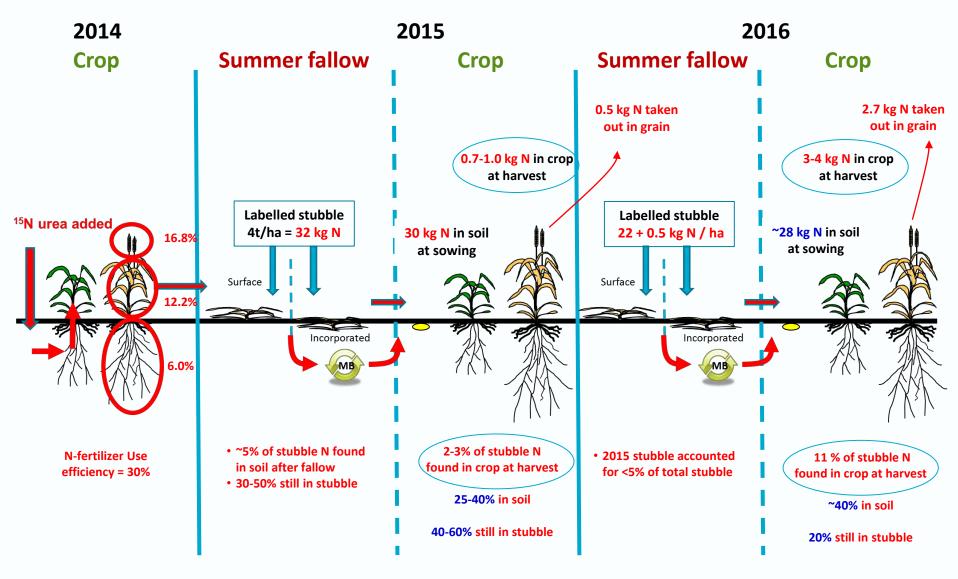

Year 1



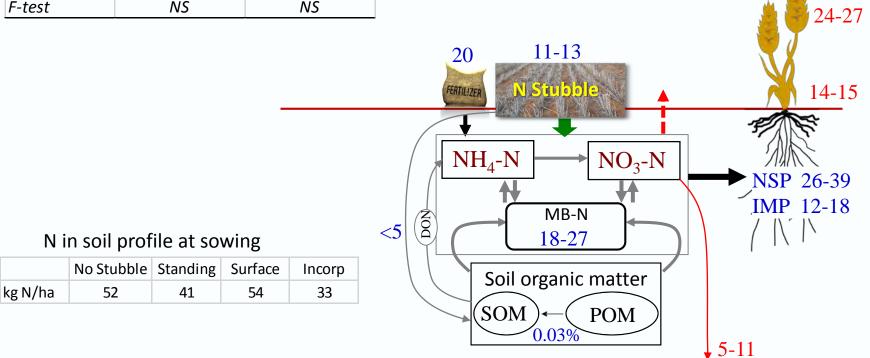
¹⁵N Urea Fertilizer use efficiency

(Year 1 and Residual effects)



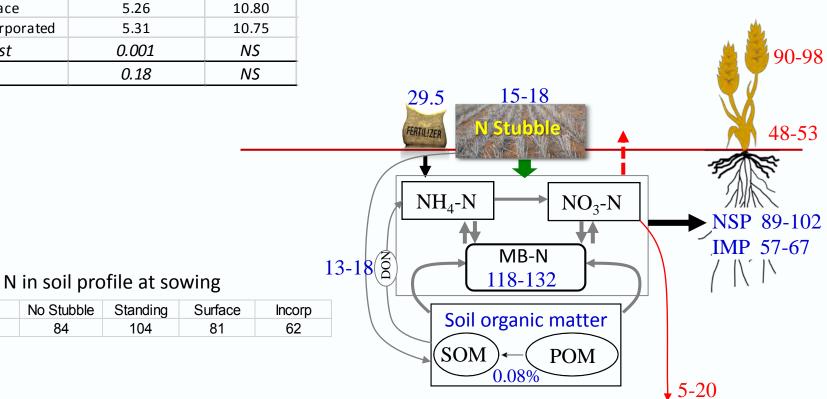


Fate of cereal stubble N in retained systems (Karoonda, SA)


Fate of cereal stubble N in retained systems (Horsham, Vic)

Karoonda: Stubble management effect on N cycling during 2016 crop

Treatment	Grain yield (t/ha)	Protein (%)
No Stubble	2.05	8.00
Standing	2.11	7.85
Surface	1.94	7.60
Incorporated	2.02	7.68
F-test	NS	NS



Page 10

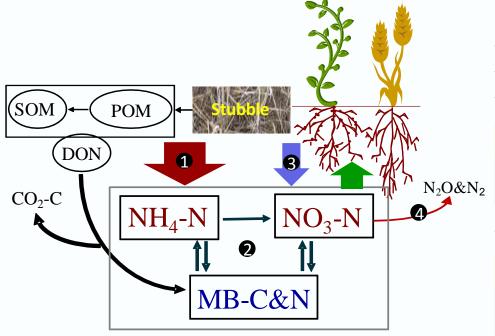
Horsham: Stubble management effect on N cycling during 2016 crop

Treatment	Grain yield (t/ha)	Protein (%)
No Stubble	5.52	10.30
Standing	5.74	10.67
Surface	5.26	10.80
Incorporated	5.31	10.75
F-test	0.001	NS
LSD	0.18	NS

kg N/ha

N cycling and microbial turnover – Pinery fire effects (Sowing 2016)

Treatment	MB-C	MB-N	DOC	Min N	Immobilization	SOC	Total N	C:N ratio
		kg /	/ ha		potential (kg N/ha)	9	%	
Burnt	620	88.6	284	13.9	44.3	4.0	1.86	21.6
Stubble	1088	155.5	373	39.8	77.7	4.2	1.84	22.7
F-test	Sig	Sig	Sig	Sig	Sig	Sig	NS	Sig


Soil Nitrogen supply potential

- N supply potential Soil biological capacity, organic N pools and microbial turnover
- N immobilization potential soil biological capacity to tie-up mineral N
- The rate of mineralisation in a growing season is controlled by soil moisture, temperature and the amount and quality of organic matter (e.g. C:N ratio)

Location	Soil type	MB-C	MB-C N immobilization potential	
		kg C / ha	kg N / h	a
Waikerie/Karoonda, SA	Sand and sandy loam	150 - 300	15 - 25	10 - 35
Streaky Bay, SA	Calcarosol - sandy loam	210 - 400	15 - 30	20 - 50
Minnipa, SA	Calcarosol - loam	560 - 710	40 - 51	42 - 56
Appila, SA	Loam	450 - 585	32 - 42	35 - 45
Wongan hills, WA	Loamy sand	250 - 350	18 - 25	25 - 40
Condobolin, NSW	Sandy loam	240 - 585	17 - 42	20 - 45
Kerrabee, NSW	Loam	420 - 525	30 - 40	35 - 50
Temora, NSW	Red earth	525 - 735	35 - 55	50 - 100
Millewa, NSW	Sandy loam	150 - 310	11 - 22	14 - 31
Rutherglen, Vic	Reb brown earth	350 - 700	25 - 50	30 - 100
Horsham	Sandy loam	140 - 230	12 - 24	10 - 16
Horsham	Clay	546 - 819	39 - 59	52 - 72
Leeton/Warialda, NSW	Clay	350 - 1000	25 - 60	25 - 75

Soil Nitrogen supply potential

Crop Sequence	Dune
first year effects	
wh-wh- wh- wh	27
wh-pasture- wh- wh	36
wh-lupin- wh- wh	38

LSD 8; Karoonda 2011-12

second year effects

wh-pasture-wh-wh

wh-lupin-wh-wh

wh-wh-wh-wh

• N mineralization estimates as a proportion of soil OC or TN are same for all treatments

30

46

50

 N Supply potential estimates show 10-20 kg N/ha differences between treatments

Managing N supply in Stubble retained systems

- Cereal stubble contributes 2-10% of next cereal crop N and decreasing in subsequent years
- Stubble retention impacts N cycling biological processes & N availability in all environments and different seasons
- Nitrogen mineralized from SOM (and crop residues) contributes ~50% of crop N uptake.
- Biological value of stubble:
 - Cereal stubble increases N immobilization potential of soil removal/burning
 - Magnitude of stubble effect depends on cropping history (pulses in rotation, # of cereals) and soil organic matter quality
- Fertilizer use efficiency
 - Urea fertilizer N use efficiency 30-45% (Yr1), 4-10% (Yr 2), 2-13% (Yr 3)

N Use Efficiency of Stubble Retained Wheat Crops - LEP soils

T McBeath, Blake Gontar, A Ware, S Kroker, Ashley Flint and Ed Hunt

Aims

To measure N supply potential on different soil x residues.

To estimate N use efficiency of wheat on key Lower EP soil types.

Nitrogen Use Efficiency (NUE) Monitoring

- Climate
- Soil- fertility and constraints
- Crop Type/ Sequence
- Fertiliser Input

	N Output (kg N/ha)		
Fertiliser N	Mineral N	Nitrogen Supply Potential (NSP)	N yield
0.5 N added	Mineral N (0- rooting depth cm)	Mineralised N (21 days)+ Microbial biomass N (0.5)	Grain Yield Grain N

NUE= Nitrogen Yield (Grain Yield x (Protein/0.567)) Fertiliser (x efficiency) +sow min N + soil N supply in-season (mineralisable)

Soil	Site	Residue	2015 NUE (% of N available)
Sand over Gravel	Lincoln	Lupin	12
		Canola	16
Sand over clay	Lincoln	Lupin	25
		Canola	30
Sand	Mt Hill	Vetch	26
		Pasture	38
Red Brown Earth	Ungarra	Beans	40
		Barley	47
Loam over Sodic Clay	Yeelanna	Beans	60
		Canola	43
Deep Clay	Cummins	Beans	68
		Canola	48

Nitrogen Use Efficiency (NUE) Monitoring

Lincoln soils			N Inputs kg N/ha		N Output (kg N/ha)	NUE (%)
	Residue	Fert N	NSP	Min N	N yield	
Sand Over Clay	Lupins	74	102	155	72	25
	Canola	99	90	146	86	30
Sand Over Gravel	Lupins	74	85	173	34	12
	Canola	90	34	131	38	16

Mt Hill sand		N Inputs (kg N/ha)		N Output (kg N/ha)	NUE (%)
Residue	Fert N	NSP	Min N	N yield	
Pasture	31	42	44	27	26
Vetch	31	34	48	37	38

Cummins Deep clay		N Input (kg N/ha		N Output (kg N/ha)	NUE (%)
Residue	Fert N	NSP	Min N	N yield	
Beans	102	80	45	120	68
Canola	100	65	78	93	48

- Soil constraints low NUE
- 10 t/ha biomass -1.5 t/ha grain yield
- Reduced soil-specific and fertiliser N inputs?
- Lack of protection of organic matter/N for soil driven supply
- Potential for losses are higher
- Fertiliser and legumes needed to maintain N supply
- High functioning microbial turnover*
 high NUE
- Wheat on bean residue is operating at a higher NUE.

Summary

- A clear soil x climate drivers of NUE and WUE
- Can we more strategically manage N using this knowledge?
 - Soil-specific N?
 - N inputs more responsive to fallow conditions?
 - Better use of legumes?
 - More thorough evaluation of our in-season N strategies?
- Are growers/ advisors interested in evaluating NUE across LEP?

Disclaimer

The information, advice and/or procedures contained in this publication are provided for the sole purpose of disseminating information relating to scientific and technical matters in accordance with the functions of CSIRO under the Science and Industry Act 1949. To the extent permitted by law CSIRO shall not be held liable in relation to any loss or damage incurred by the use/or reliance upon any information and/or procedure contained in this publication.

Mention of any product in this publication is for information purposes only and does not constitute a recommendation of any such product either express or implied by CSIRO.

This publication contains information that is unpublished and can not be reproduced in any form without the written consent from the authors.

