

☑Water limited Yield

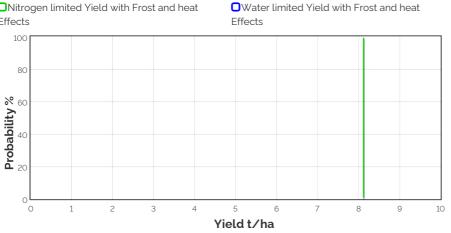
Save as PDF

11-Nov-2022

Nicole Baty: Cockaleechie

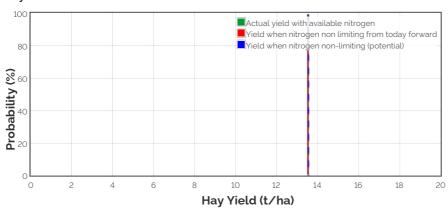
Cultivar: Sunco

Sowing details: 200 plants/m² on 10-May Expected maturity date: 8-Nov

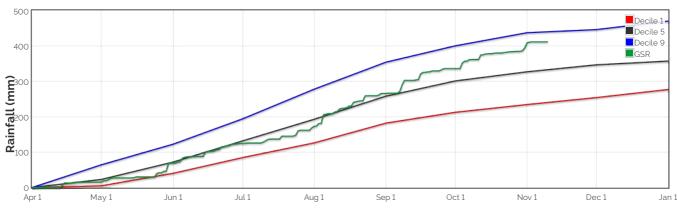

Paddock Details Initial conditions date: 10-May

Soil: ResEP_clay_Cockaleechie 1400 mm max rooting depth 2000 kg/ha of Wheat Stubble: No till

Grain Yield Outcome

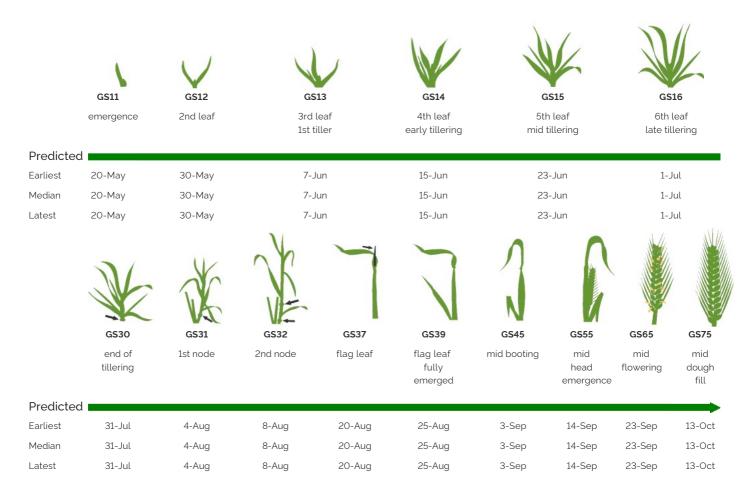

☑Nitrogen limited Yield

ONitrogen limited Yield with Frost and heat Effects

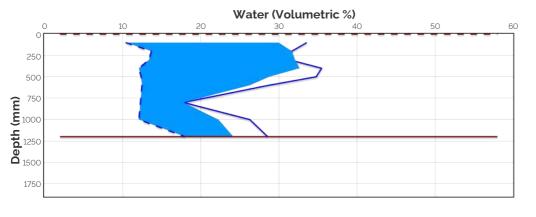

This graph shows the probability of exceeding a range of yield outcomes this season. It takes into account your pre-season soil moisture, the weather conditions so far, soil N and agronomic inputs. The long term record from your nominated weather station is then used to simulate what would have happened from this date on in each year of the climate record. The yield results are used to produce this graph.

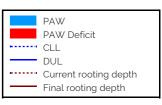
Hay Yield Outcome

This graph shows the probability of exceeding a range of hay yield outcomes this season. It takes into account the same factors as the grain yield graph above. When above ground dry matter is below 2t/ha, hay yield is assumed to be 70% of dry matter, with a moisture content of 13%. When dry matter is between 2 and 12t/ha, hay yield is assumed to be between 70 and 75% of dry matter (sliding scale). When dry matter is above 12t/ha, hay yield is assumed to be between 75 and 80% (sliding scale).


Current dry matter: Okg/ha

The Season So Far - Growing Season Rainfall Deciles


Simulated and Predicted Crop Growth Stage



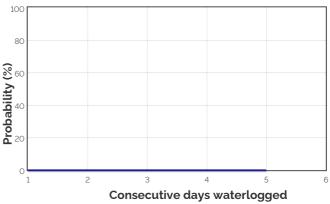
Probability and Incidence of Frost and Heat Shock

Frost damage during flow	Heat damage	Heat damage during grain fill			
Probability Th	Prok	pability	This Season		
mild 2 to 0°C during	10%	1	mild 32 to 34°C	25%	0
flowering	407		moderate 34 to 36°C	16%	0
Moderate 0 to -2°C during flowering & early grain fill	4%	0	Severe Above 36°C	6%	0
Severe 0% Less than -2°C during flowering & grain fill	0				

Current Distribution of PAW

Current root depth = 0 mm Median final root depth = 1200 mm Current crop PAW available to roots = 19 mm Total Soil PAW = 150 mm PAWC = 182 mm

PAW = Plant Available Water


- CLL = Crop Lower Limit or Wilting Point
- DUL = Drained Upper Limit or Field Capacity
- **PAWC** = Plant Available Water Capacity

Current Crop PAW - Soil water currently accessible to the roots down to the current rooting depth Soil PAW - Total accessible soil water in the soil profile

Water Budget

Current PAW status:	150 mm		
Comment DAWY states	150	110 40	
Run-off since 10-May	1 mm	lity	
Deep drainage since 10-May	16 mm	8 60	
Transpiration since 10-May	246 mm	<u>.</u>	
Evaporation since 10-May	130 mm		
Irrigations		80	
Rainfall since 10-May	384.7 mm		
Initial PAW status @ 10-May	249 mm	100	
-		-	

Probability of Future Waterlogging Events

Nitrogen Budget

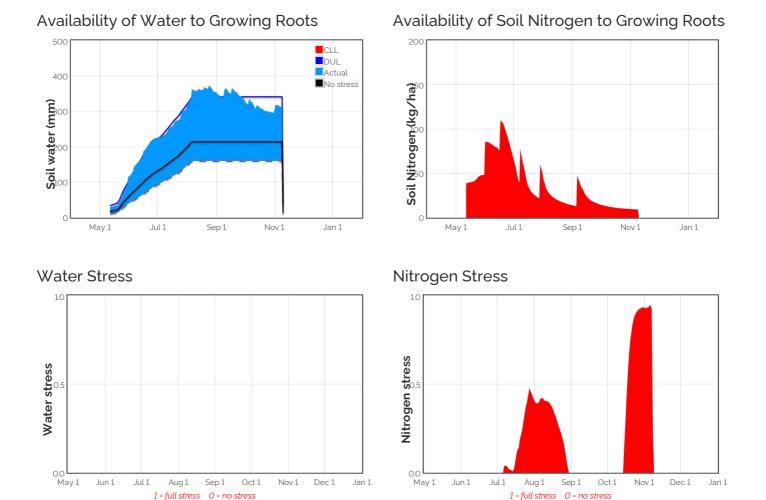
N mineralisation since 10-May

Initial N status @ 10-May

N tie up since 10-May

N applications

current distribution of solt nitrogen (kg) has								
79 kg/ha 4 kg/ha 4 kg/ha	0	20	40	60	80	100		
10-May : 9.7 kg/ha 1-Jun : 37.7 kg/ha 17-Jun : 36.3 kg/ha 8-Jul : 42.3 kg/ha 29-Jul : 38.6 kg/ha 6-Sep : 34.5 kg/ha 0 kg/ha 3 kg/ha 0 kg/ha	500 Debth (mm) Debt							
10 kg/ha	1500							
	Nitrogen Current rooting depth							

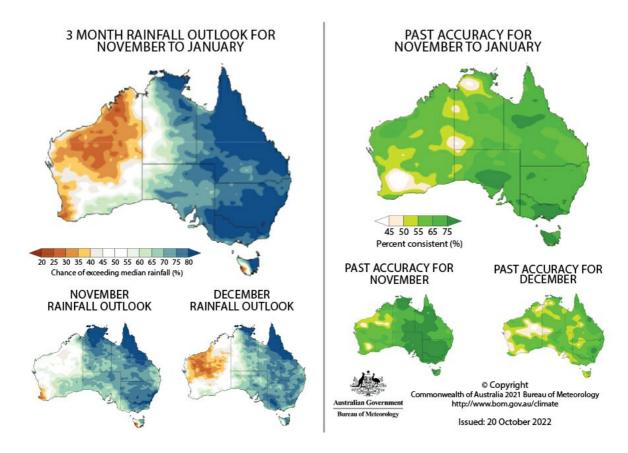

Current distribution of soil nitrogen (ka/ha)

Total N in plant De-nitrification since 10-May Leaching since 10-May

Current N status:

Median N mineralisation to maturity = 0 kg/ha Median N tie up to maturity = 0 kg/ha

Current Crop Available N = 2 kg/ha Total Soil N = 10 kg/ha



Brief periods of mild to moderate stress do not necessarily lead to reduced yield. To see the likely impacts of additional nitrogen fertiliser rates use the Nitrogen and Nitrogen Profit reports.

Median projected crop performance and requirements for the next 10 days assuming no rain and no added fertiliser

Date Growth		Evap. Wate		r Nuse	Water avail. to roots	Water avail. to roots	N avail.	MineralisationN tie up	
	Stage	(mm)	use	(kg/ha)	above stress threshold	above CLL (mm)	to roots	(kg/ha)	(kg/ha)
			(mm)		(mm)		(kg/ha)		
11-Nov	9.0	0.2	0.0	0.0	12.5	19.4	0.5	0.0	0.8
12-Nov	9.0	0.2	0.0	0.0	12.4	19.4	O.1	0.0	0.4
13-Nov	9.0	0.2	0.0	0.0	12.3	19.3	0.0	0.0	0.2
14-Nov	9.0	0.2	0.0	0.0	12.2	19.2	0.0	0.0	0.2
15-Nov	9.0	0.2	0.0	0.0	12.1	19.1	0.0	0.0	0.1
16-Nov	9.0	0.2	0.0	0.0	12.0	19.0	0.0	0.0	0.1
17-Nov	9.0	0.2	0.0	0.0	12.0	18.9	0.0	0.0	0.1
18-Nov	9.0	0.2	0.0	0.0	11.9	18.8	0.0	0.0	O.1
19-Nov	9.0	0.2	0.0	0.0	11.7	18.7	0.0	0.0	0.1
20-Nov	9.0	0.2	0.0	0.0	11.6	18.6	0.0	0.0	0.1

The water available to roots above the stress threshold is the amount of PAW (mm) above one third of the total water holding capacity of this soil. If the water values are below this stress threshold the water available to roots above the stress threshold will be negative.

