Crop Report

port

11-Nov-2022

Save as PDF

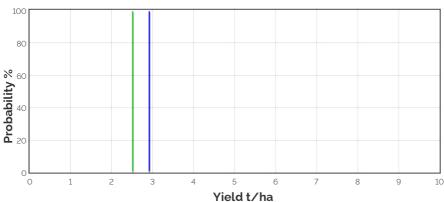
Nicole Baty: Pinkawillinie

Crop: Wheat

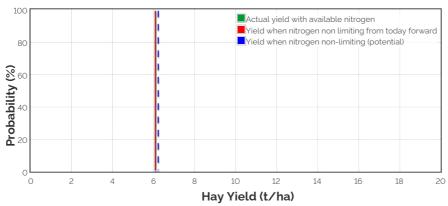
Cultivar: GrenadeCLPlus Sowing details: 150 plants/m² on 12-May Expected maturity date: 30-Oct

	Initial conditions date: 16-Mar
Soil:	ResEP-Buckleboo Sandy Loam over
	Clay Loam
Stubble:	800 mm max rooting depth
	1500 kg/ha of Barley
	No till

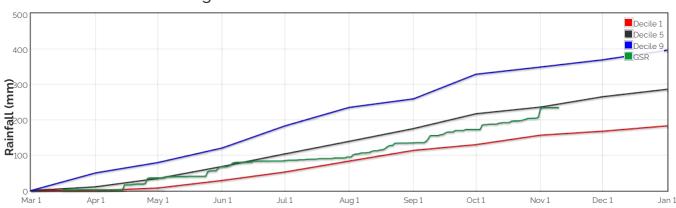
Paddock Details


Grain Yield Outcome

☑Nitrogen limited Yield

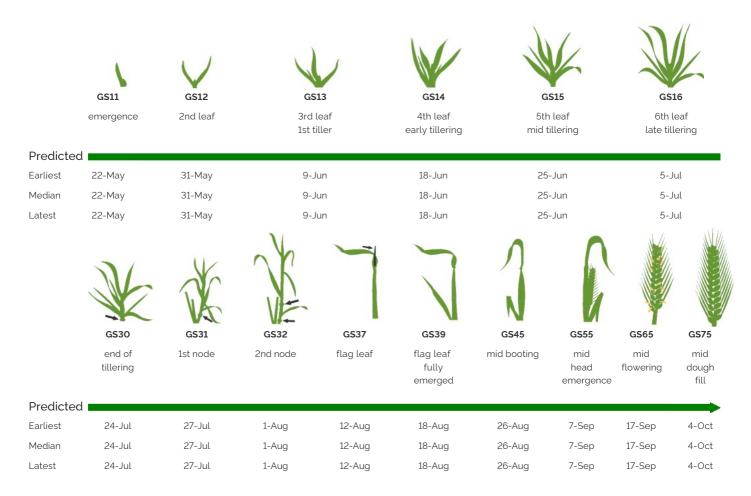

☑ Water limited Yield

• Water limited Yield with Frost and heat Effects

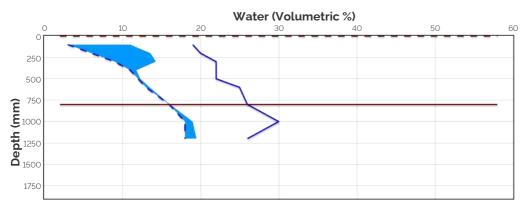

This graph shows the probability of exceeding a range of yield outcomes this season. It takes into account your pre-season soil moisture, the weather conditions so far, soil N and agronomic inputs. The long term record from your nominated weather station is then used to simulate what would have happened from this date on in each year of the climate record. The yield results are used to produce this graph.

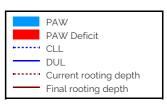
Hay Yield Outcome

This graph shows the probability of exceeding a range of hay yield outcomes this season. It takes into account the same factors as the grain yield graph above. When above ground dry matter is below 2t/ha, hay yield is assumed to be 70% of dry matter, with a moisture content of 13%. When dry matter is between 2 and 12t/ha, hay yield is assumed to be between 70 and 75% of dry matter (sliding scale). When dry matter is above 12t/ha, hay yield is assumed to be between 75 and 80% (sliding scale).


Current dry matter: 0kg/ha

The Season So Far - Growing Season Rainfall Deciles


Simulated and Predicted Crop Growth Stage



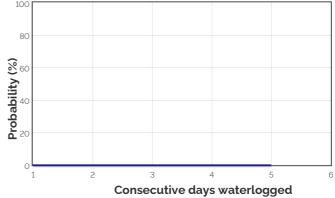
Probability and Incidence of Frost and Heat Shock

Frost damage during flowering			Heat damage during grain fill		
Probability This Season		Probability This Season	This Season		
mild 2 to 0°C during	42%	0	mild 51% 0 32 to 34°C		
flowering	C9/	•	moderate 30% 0 34 to 36°C		
moderate 0 to -2°C during flowering & early grain fill	6%	0	severe 16% O Above 36°C		
Severe 0% 0 Less than -2°C during flowering & grain fill					

Current Distribution of PAW

Current root depth = 0 mm Median final root depth = 800 mm Current crop PAW available to roots = 9 mm Total Soil PAW = 29 mm PAWC = 136 mm

PAW = Plant Available Water

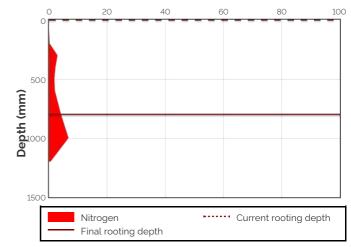

- CLL = Crop Lower Limit or Wilting Point
- DUL = Drained Upper Limit or Field Capacity
- **PAWC** = Plant Available Water Capacity

Current Crop PAW - Soil water currently accessible to the roots down to the current rooting depth Soil PAW - Total accessible soil water in the soil profile

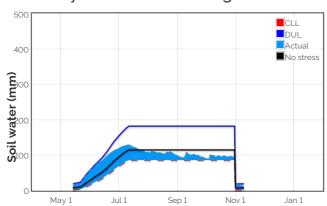
Water Budget

Initial PAW status @ 16-Mar	70 mm	100	
Rainfall since 16-Mar	232.8 mm		
Irrigations		80	
Evaporation since 16-Mar	169 mm	00	
Transpiration since 16-Mar	105 mm		
Deep drainage since 16-Mar	0 mm	8 60	
Run-off since 16-Mar	0 mm	lity	
Current PAW status:	29 mm	1iq 40	
		<u>a</u>	

Probability of Future Waterlogging Events

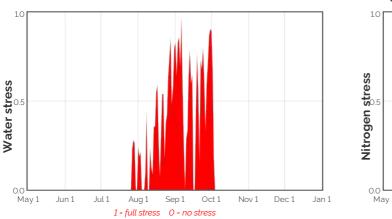


Nitrogen Budget

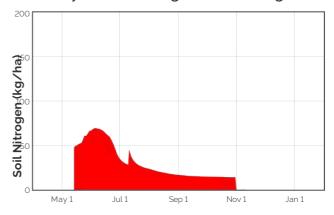

Median N tie up to maturity = 0 kg/ha

Initial N status @ 16-Mar N mineralisation since 16-Mar N tie up since 16-Mar N applications	81 kg/ha 9 kg/ha 13 kg/ha
Total N in plant De-nitrification since 16-Mar	12-May : 25.4 kg/ha 11-Jul : 18.4 kg/ha O kg/ha O kg/ha
Leaching since 16-Mar	0 kg/ha
Current N status: Median N mineralisation to maturity = 0 kg/ha	21 kg/ha

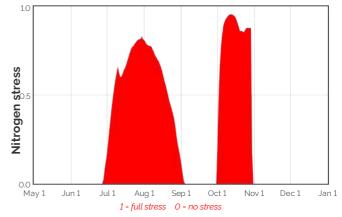
Current distribution of soil nitrogen (kg/ha)



Current Crop Available N = 0 kg/ha Total Soil N = 21 kg/ha

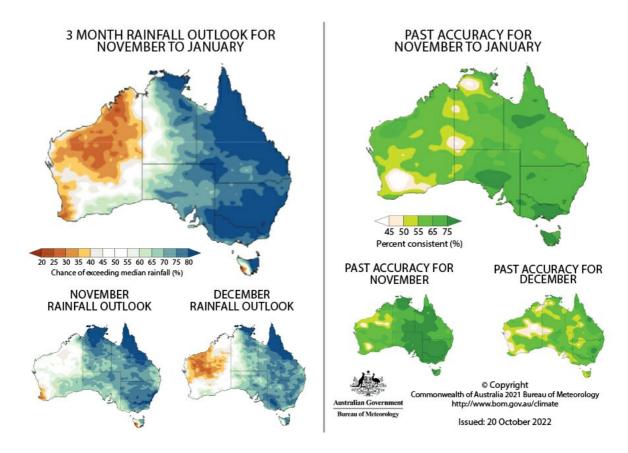


Availability of Water to Growing Roots


Water Stress

Availability of Soil Nitrogen to Growing Roots

Nitrogen Stress



Brief periods of mild to moderate stress do not necessarily lead to reduced yield. To see the likely impacts of additional nitrogen fertiliser rates use the Nitrogen and Nitrogen Profit reports.

Median projected crop performance and requirements for the next 10 days assuming no rain and no added fertiliser

Date	Growth	Evap.	Water	ter N use	Water avail. to roots	Water avail. to roots	N avail.	MineralisationN tie up	
	Stage	(mm)	use	(kg/ha)	above stress threshold	above CLL (mm)	to roots	(kg/ha)	(kg/ha)
			(mm)		(mm)		(kg/ha)		
11-Nov	9.0	0.7	0.0	0.0	2.3	7.1	0.0	0.0	0.1
12-Nov	9.0	0.7	0.0	0.0	2.0	6.8	0.0	0.0	0.1
13-Nov	9.0	0.6	0.0	0.0	1.6	6.4	O.1	0.0	0.0
14-Nov	9.0	0.6	0.0	0.0	1.3	6.1	O.1	0.0	0.0
15-Nov	9.0	0.6	0.0	0.0	1.0	5.8	O.1	0.0	0.0
16-Nov	9.0	0.5	0.0	0.0	0.7	5.5	O.1	0.0	0.0
17-Nov	9.0	0.5	0.0	0.0	O.4	5.2	O.1	0.0	0.0
18-Nov	9.0	0.5	0.0	0.0	0.2	5.0	O.1	0.0	0.0
19-Nov	9.0	0.5	0.0	0.0	-O.1	4.7	O.1	0.0	0.0
20-Nov	9.0	0.5	0.0	0.0	-0.3	4.5	O.1	0.0	0.0

The water available to roots above the stress threshold is the amount of PAW (mm) above one third of the total water holding capacity of this soil. If the water values are below this stress threshold the water available to roots above the stress threshold will be negative.

