Crop Report

☑Water limited Yield

Save as PDF

30-Sep-2022 Nicole Baty: Pt Kenny

Paddock Details

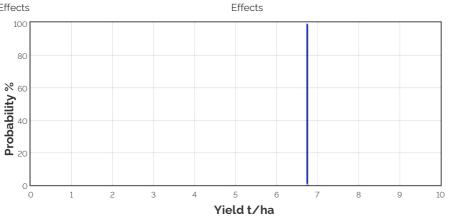
Initial conditions date: 15-Mar

Grey calcareous sandy clay loam (Port Soil: Kenny No322) 600 mm max rooting depth Stubble: 100 kg/ha of Medic No till

• Water limited Yield with Frost and heat

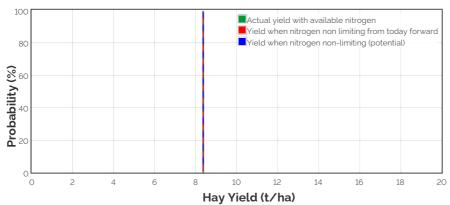
Grain Yield Outcome

☑Nitrogen limited Yield

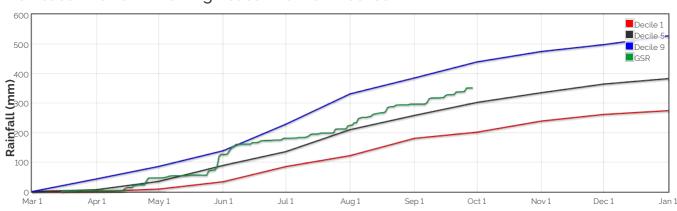

ONitrogen limited Yield with Frost and heat Effects

Crop: Wheat

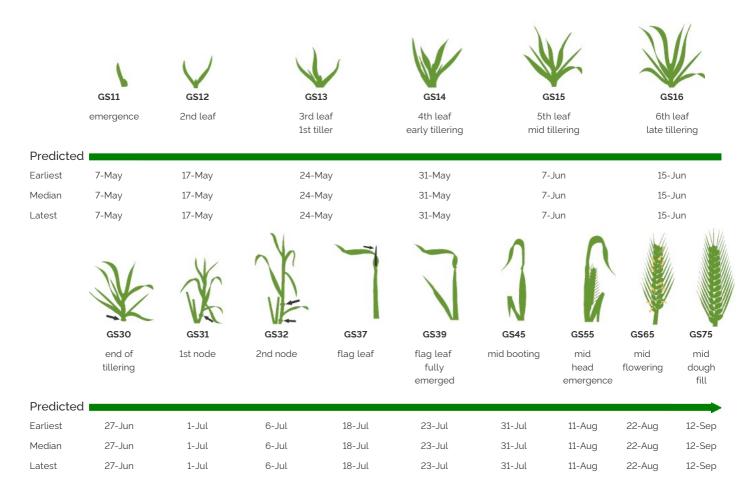
Cultivar: Scepter


Sowing details: 160 plants/m² on 28-Apr

Expected maturity date: 11-Oct

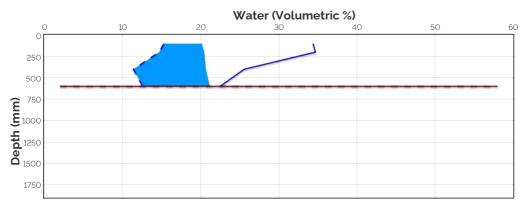

This graph shows the probability of exceeding a range of yield outcomes this season. It takes into account your pre-season soil moisture, the weather conditions so far, soil N and agronomic inputs. The long term record from your nominated weather station is then used to simulate what would have happened from this date on in each year of the climate record. The yield results are used to produce this graph.

Hay Yield Outcome


This graph shows the probability of exceeding a range of hay yield outcomes this season. It takes into account the same factors as the grain yield graph above. When above ground dry matter is below 2t/ha, hay yield is assumed to be 70% of dry matter, with a moisture content of 13%. When dry matter is between 2 and 12t/ha, hay yield is assumed to be between 70 and 75% of dry matter (sliding scale). When dry matter is above 12t/ha, hay yield is assumed to be between 75 and 80% (sliding scale).

Current dry matter: 15342.1kg/ha

The Season So Far - Growing Season Rainfall Deciles


Simulated and Predicted Crop Growth Stage

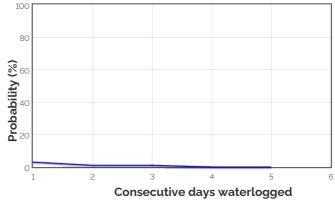
Probability and Incidence of Frost and Heat Shock

Frost damage during flowering Probability This Season				Heat damage during grain fill				
				Probability		This Season		
mild 2 to 0°C during			10%	0	mild 32 to 34°C	9%	0	
flowering			224	_	moderate 34 to 36°C	0%	0	
moderate O to -2°C during flowering & early grain fill			0%	0	Severe Above 36°C	0%	0	
SEVERE Less than -2°C during flowering & grain fill	0%	0						

Current Distribution of PAW

Current root depth = 600 mm Median final root depth = 600 mm Current crop PAW available to roots = 50 mm Total Soil PAW = 50 mm PAWC = 87 mm

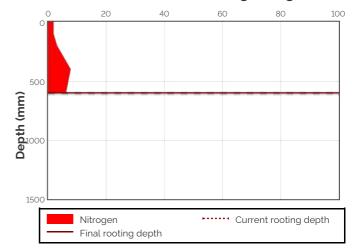
PAW = Plant Available Water

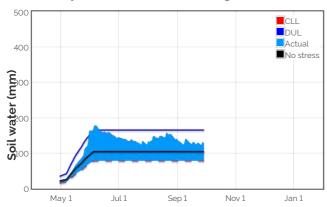

- CLL = Crop Lower Limit or Wilting Point
- DUL = Drained Upper Limit or Field Capacity
- **PAWC** = Plant Available Water Capacity

Current Crop PAW - Soil water currently accessible to the roots down to the current rooting depth Soil PAW - Total accessible soil water in the soil profile

Water Budget

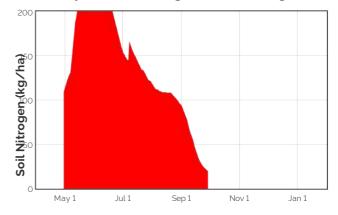
Initial PAW status @ 15-Mar	49 mm	100	
Rainfall since 15-Mar	351.1 mm		
Irrigations		80	
Evaporation since 15-Mar	138 mm	00	
Transpiration since 15-Mar	169 mm		
Deep drainage since 15-Mar	40 mm	8 60	
Run-off since 15-Mar	5 mm	lity	
Current PAW status:	50 mm	40 40	

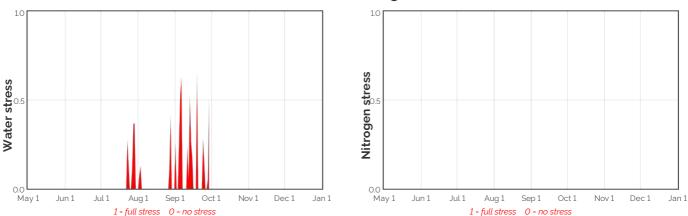

Probability of Future Waterlogging Events


Nitrogen Budget

Initial N status @ 15-Mar	269 kg/ha
N mineralisation since 15-Mar	17 kg/ha
N tie up since 15-Mar	2 kg/ha
N applications	
	28-Apr : 8 kg/ha
	14-Jun : 27.6 kg/ha
	8-Jul : 23 kg/ha
Total N in plant	274 kg/ha
De-nitrification since 15-Mar	3 kg/ha
Leaching since 15-Mar	42 kg/ha
Current N status:	20 kg∕ha
Median N mineralisation to maturity = 0.314 kg/ha Median N tie up to maturity = 0 kg/ha	

Current distribution of soil nitrogen (kg/ha)

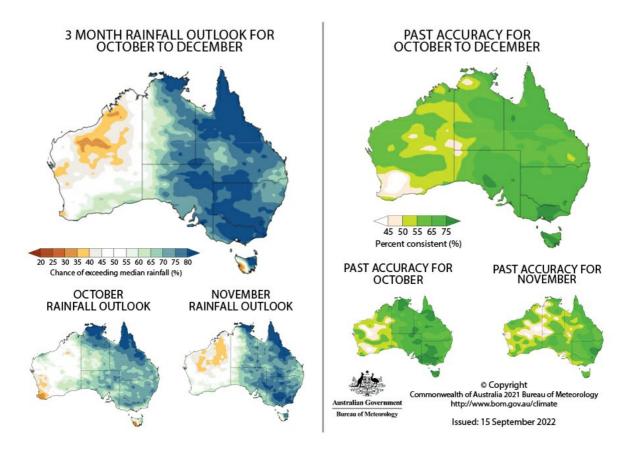

Current Crop Available N = 20 kg/ha Total Soil N = 20 kg/ha


Water Stress

Availability of Water to Growing Roots

Availability of Soil Nitrogen to Growing Roots

Nitrogen Stress



Brief periods of mild to moderate stress do not necessarily lead to reduced yield. To see the likely impacts of additional nitrogen fertiliser rates use the Nitrogen and Nitrogen Profit reports.

Median projected crop performance and requirements for the next 10 days assuming no rain and no added fertiliser

Date	Growth	Evap.	Water	N use	Water avail. to roots	Water avail. to roots	N avail.	MineralisationN tie up	
	Stage	(mm)	use	(kg/ha)	above stress threshold	above CLL (mm)	to roots	(kg/ha)	(kg∕ha)
			(mm)		(mm)		(kg/ha)		
1-Oct	83.4	0.9	1.6	0.6	15.6	41.8	17.8	0.0	0.0
2-Oct	83.9	0.6	1.5	0.5	13.8	40.0	17.3	0.0	0.0
2-Oct	84.3	0.5	1.4	0.5	12.0	38.2	16.9	0.0	0.0
3-Oct	84.8	0.4	1.3	0.4	10.4	36.6	16.5	0.0	0.0
4-Oct	85.2	0.4	1.3	0.0	8.8	35.0	16.5	0.0	0.0
5-Oct	85.7	0.4	1.2	0.0	7.6	33.7	16.6	0.0	0.0
6-Oct	86.2	0.3	1.1	0.0	6.1	32.2	16.6	0.0	0.0
7-Oct	86.7	0.3	1.1	0.0	4.8	30.9	16.6	0.0	0.0
8-Oct	87.0	0.3	1.0	0.0	3.4	29.6	16.6	0.0	0.0
9-Oct	89.0	0.3	1.0	0.0	2.2	28.4	16.6	0.0	0.0

The water available to roots above the stress threshold is the amount of PAW (mm) above one third of the total water holding capacity of this soil. If the water values are below this stress threshold the water available to roots above the stress threshold will be negative.

