

20-Jun-2024 Andrew H Ware: Lock

Paddock Details

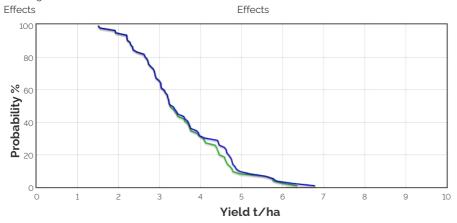
Initial conditions date: 24-Apr

Grey Calcareous Loamy Sand (Lock Soil No318) 800 mm max rooting depth Stubble: 1000 kg/ha of Canola No till

Water limited Yield with Frost and heat

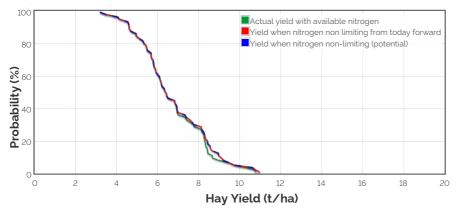
☑Water limited Yield

Grain Yield Outcome

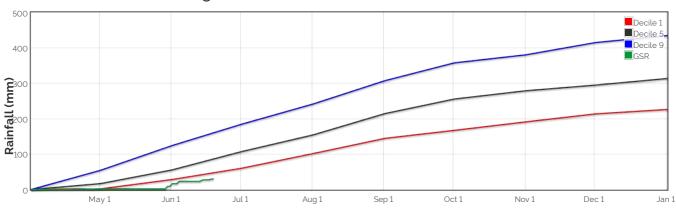

Crop: Wheat

Cultivar: Calibre

Sowing details: 150 plants/m² on 1-Jun


Expected maturity date: 26-Nov

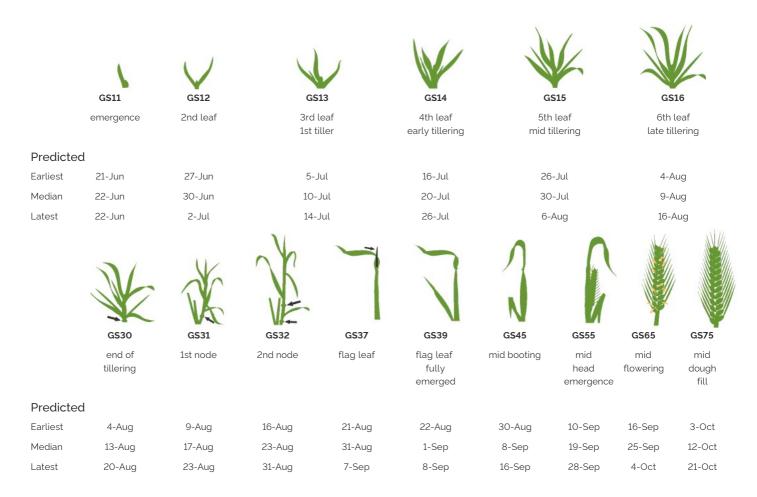
☑Nitrogen limited Yield


This graph shows the probability of exceeding a range of yield outcomes this season. It takes into account your pre-season soil moisture, the weather conditions so far, soil N and agronomic inputs. The long term record from your nominated weather station is then used to simulate what would have happened from this date on in each year of the climate record. The yield results are used to produce this graph.

Hay Yield Outcome

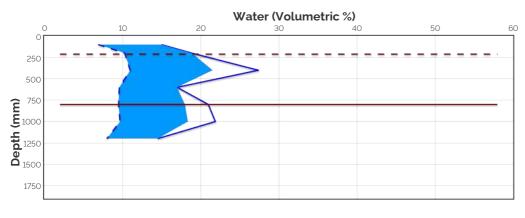
This graph shows the probability of exceeding a range of hay yield outcomes this season. It takes into account the same factors as the grain yield graph above. When above ground dry matter is below 2t/ha, hay yield is assumed to be 70% of dry matter, with a moisture content of 13%. When dry matter is between 2 and 12t/ha, hay yield is assumed to be between 70 and 75% of dry matter (sliding scale). When dry matter is above 12t/ha, hay yield is assumed to be between 75 and 80% (sliding scale).

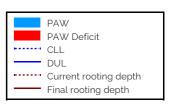
Current dry matter: 25.939130752150877kg/ha



The Season So Far - Growing Season Rainfall Deciles

ONitrogen limited Yield with Frost and heat


Simulated and Predicted Crop Growth Stage



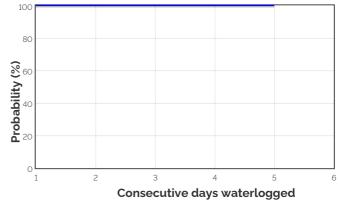
Probability and Incidence of Frost and Heat Shock

Frost damage during flowering Probability This Season				Heat damage during grain fill		
				Probability		This Season
2 to 0°C during		8%	0	mild 32 to 34°C	57%	0
flowering		1%	•	moderate 34 to 36°C	32%	0
moderate 0 to -2°C during flowering & early grain fill		1/6	0	severe Above 36°C	23%	0
Severe 0% Less than -2°C during flowering & grain fill	6 O					

Current Distribution of PAW

Current root depth = 211 mm Median final root depth = 800 mm Current crop PAW available to roots = 18 mm Total Soil PAW = 70 mm PAWC = 87 mm

PAW = Plant Available Water

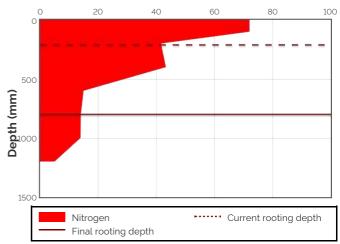

- CLL = Crop Lower Limit or Wilting Point
- DUL = Drained Upper Limit or Field Capacity
- **PAWC** = Plant Available Water Capacity

Current Crop PAW = Soil water currently accessible to the roots down to the current rooting depth Soil PAW = Total accessible soil water in the soil profile

Water Budget

Initial PAW status @ 24-Apr Rainfall since 24-Apr	70 mm 28.4 mm
Irrigations	
Evaporation since 24-Apr	20 mm
Transpiration since 24-Apr	0 mm
Deep drainage since 24-Apr	0 mm
Run-off since 24-Apr	0 mm
Current PAW status:	70 mm

Probability of Future Waterlogging Events

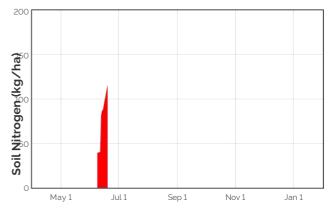


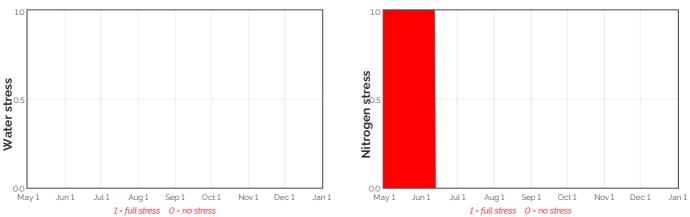
Nitrogen Budget

Initial N status @ 24-Apr N mineralisation since 24-Apr N tie up since 24-Apr N applications	144 kg/ha 22 kg/ha 0 kg/ha
Total N in plant De-nitrification since 24-Apr	5-May : 20 kg/ha 12-Jun : 41.4 kg/ha 1 kg/ha 0 kg/ha
Leaching since 24-Apr Current N status:	0 kg/ha 206 kg/ha

Median N mineralisation to maturity = 60.034527730477 kg/ha Median N tie up to maturity = 0 kg/ha

Current distribution of soil nitrogen (kg/ha)

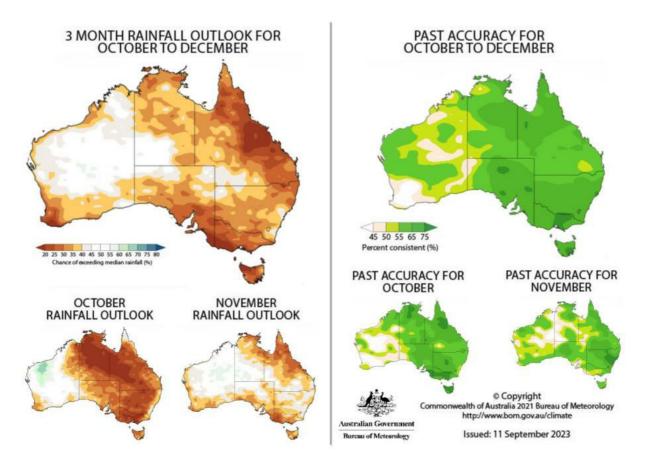

Current Crop Available N = 116 kg/ha Total Soil N = 206 kg/ha


Availability of Water to Growing Roots

Water Stress

Availability of Soil Nitrogen to Growing Roots

Nitrogen Stress



Brief periods of mild to moderate stress do not necessarily lead to reduced yield. To see the likely impacts of additional nitrogen fertiliser rates use the Nitrogen and Nitrogen Profit reports.

Median projected crop performance and requirements for the next 10 days assuming no rain and no added fertiliser

Date	Growth	Evap.	Water	N use	Water avail. to roots	Water avail. to roots	N avail.	MineralisationN tie up	
	Stage	(mm)	use	(kg/ha)	above stress threshold	above CLL (mm)	to roots	(kg/ha)	(kg/ha)
			(mm)		(mm)		(kg/ha)		
21-Jun	11.0	0.2	0.0	0.0	13.2	19.5	119.4	0.3	0.0
22-Jun	11.1	0.2	0.0	-0.3	14.O	21.0	122.4	0.3	0.0
23-Jun	11.2	0.2	0.0	-0.1	14.7	22.4	125.6	0.3	0.0
24-Jun	11.4	0.2	0.0	-0.1	15.4	23.8	128.7	0.3	0.0
25-Jun	11.5	0.2	0.0	-0.1	16.O	25.2	131.7	0.3	0.0
26-Jun	11.6	0.2	0.0	-0.1	16.6	26.6	134.9	0.3	0.0
27-Jun	11.7	0.2	0.0	-0.2	17.2	27.9	137.9	0.3	0.0
28-Jun	11.9	0.2	0.0	-0.2	17.9	29.3	141.O	0.3	0.0
29-Jun	12.0	0.2	O.1	-0.2	18.3	30.6	143.9	0.3	0.0
30-Jun	12.1	0.2	O.1	-0.2	18.8	31.8	146.9	0.3	0.0

The water available to roots above the stress threshold is the amount of PAW (mm) above one third of the total water holding capacity of this soil. If the water values are below this stress threshold the water available to roots above the stress threshold will be negative.

