

Nitrogen Strategies for EP

Therese McBeath with

Peter Hayman, Bronya Cooper, Andrew Ware, Jacob Giles, Bonnie Flohr, Murray Unkovich

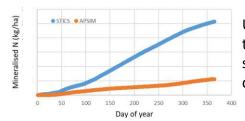
- LEP soils and climate.
- Gaps in our knowledge of N losses and mineralisation.
- Recent improvements in soil water and yield potential predictions.
- In-season N strategies.
- Approaches that combine legume and fertiliser management to better 'bank' nitrogen.
- Thinking about the year ahead

Losses/ demands

- Leaching (sands)
 1-3% of fertiliser N (WA)
- Waterlogging and denitrification (clay and texture contrast)
 3-10% of fertiliser N (Latta et al.)
- Lateral Flow (texture contrast)
 ?? Up to 10x variation in soil mineral N values in a paddock
- Volatilisation (alkaline soils worst) up to 12% of fertiliser N but dry soil problem

Delays

- Immobilisation (temporary)
 5 kg N/t stubble at sowing
- Waterlogging delays conversion of ammonia



Gains/ Supply

• Fertiliser

Fertiliser recovery varies (3-50% measured on EP).

- Legumes
 Varies by crop but ~20 kg N/t grain (Peoples et al.)
- Mineralisation- conversion of N from organic matter (soil and residues) to plant available forms Nitrogen supply potential (34-100 kg N/ha) in 2015/16

Unkovich et al. collaboration to test if we can use stable soil properties and climate data to better predict Nmin.

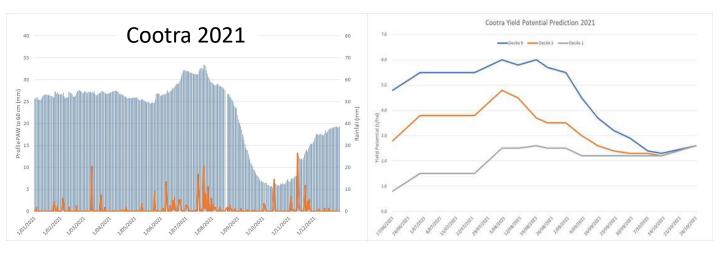
N fertiliser requirement= N demand-N supply

N demand is the amount required to produce a target yield

Assumption is that each tonne removes 20 kg N/ha

Target yield is a % of yield potential (% is usually a fudge factor based on experience, logistics, \$\$, attitude to risk)

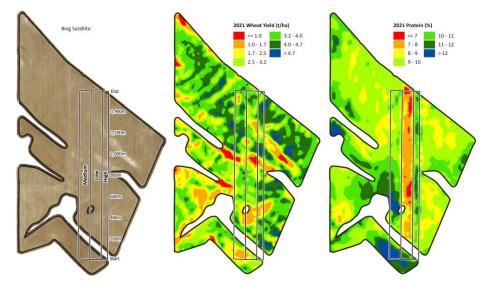
Needs adjustment for fertiliser recovery/loss


Assumption is that recovery is 50% of N added

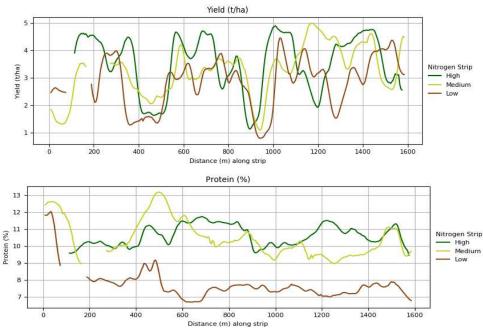
N supply is the amount that the soil can supply without fertiliser (Starting mineral N and mineralised N)

Mineralisation is often assumed to be 0.15 x organic carbon x growing season rainfall.

7 t/ha wheat at Cockaleechie is 280 kg N (6 x 40)- 105 kg starting Mineral N- 96 kg Mineralised N =79 kg fertiliser N/ha= 171 kg Urea/ha

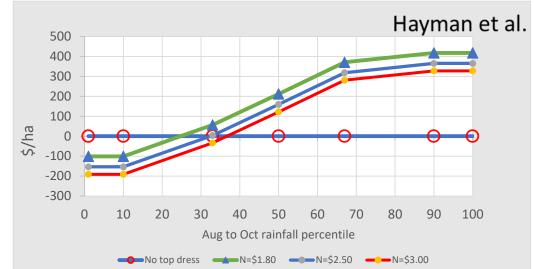


- Combination of soil water probe showing stored water and strong yield potential motivated N test strips.
- Reality is that there is a wide range of possible outcomes for the part of the season when decisions are made.
- Soil characterisation ongoing as yield prophet often underpredicts yield for this site.



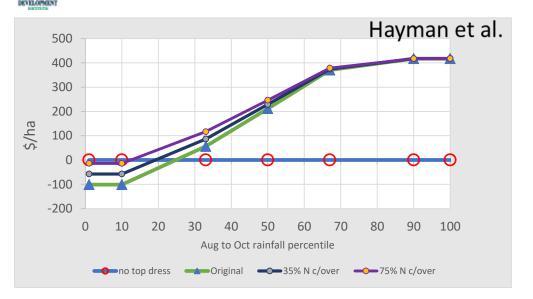
Test Strips-Cootra

250 50

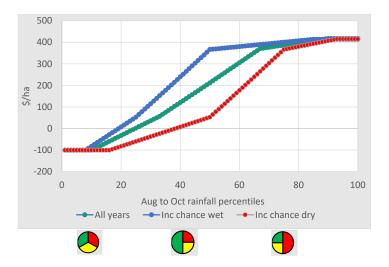


Of the 1130 m strip:

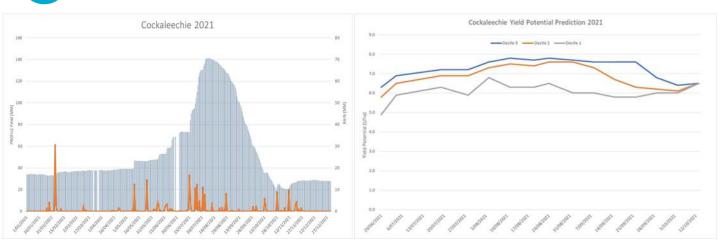
- 70% was responsive to N> low input.
- 61% had more grain yield with high N compared with medium N.


N budgeting- Cootra

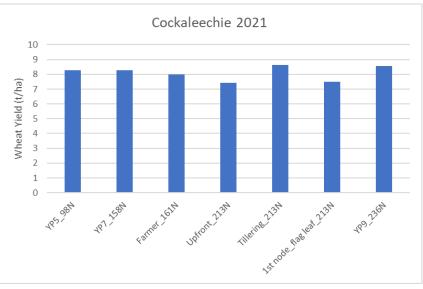
- A higher cost of N does not change the shape of the curve it just shifts the profit for all deciles south.
- Under these assumptions, it is still profitable to add 75 kg/ha topdressing even if urea has shifted from \$828/t to \$1380/t.



- Assuming 35% of N is carrirf over leads to 10% increase long term average return on topdressing with 75 kg/ha.
- 70% carryover leads to 20% increase.
- The impact is on the lowest deciles shifting the decile 1 outcome from -\$110 to -57 (35% carryover) and -\$14 (70% carryover)


N budgeting- Cootra

- Long term average return on topdressing +26% (increased chance of wet) and -32% (increased chance of dry).
- Under these assumptions no change to the worst (decile
 1) or best (decile 10 outcome).


Hayman et al.

Cockaleechie-Soil Water and Yield potential

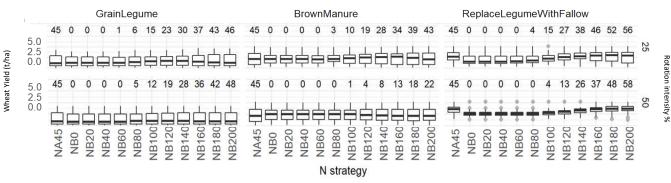
- With adjustment to ensure soils and phenology match local conditions yield prophet predictions are more trustworthy.
- Stored water information provides confidence with setting the % of potential to target.

- A range of strategies tested based on target yields set by yield prophet (YP) deciles and timing effects.
- Initial responses related to N dose but no sig. effects on grain yield.

- Test strip of extra 37 kg N yielded > for 58% of the strip
- Protein differences more apparent with an important shift
 (kg/ha) (kg/ha)
 from ASW to APW

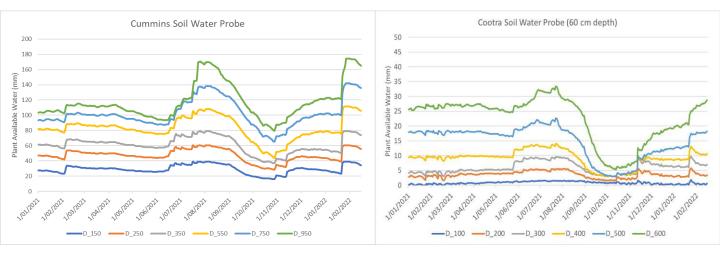
- Know your target yield (yield potential can be a guide).
- Make sure the crop is set up for the first phase of growth.
- Understand your soils in terms of losses, but also logistics of trying to manage with the potential for losses.
- Monitor how soil mineral N is responding in different soils/ situations (unpopular I know!).
- Utilise supporting tools/budgets to predict N requirement
- Test strips can be useful for integrating the soil and plant response to inputs.
- Reflect on end of season experiences to guide your intuition.

- An emerging approach to determining the amount of nitrogen to supply to crops has been coined the "N Bank" strategy (Smith et al., 2019; Meier et al. 2021)
- The approach aims to maintain a level of N in the soil that will not limit cereal production (Meier et al. 2021)
- Low rainfall environments will likely require a mix of legume and fertiliser to match N bank requirements (e.g. soil type, economics, risk)
- Based on data from our legumes project, we have modelled N contribution of grain and brown manure legumes to the farming system in different soil types and climates.



Wheat yield from average amount of N fertiliser applied

(proportion of rotation as legumes shown on right y-axis)


- GSR 234 mm
- 120 kg N/ha optimal for continuous cereal
- Lower N fert applied due to higher mineralisation compared to sand (not shown).
- Grain legumes contribute a mean of 11-18 N kg/ha per year to 120 NB
- Brown manure legume contribute 15-34 N kg/ha per year to 120 NB

• Late Fallow Nitrogen 2021/2022

Location	2020 crop	March 21 Nitrogen (kg/ha)	2021 crop	2021 Yield (t/ha)	Feb 22 Nitrogen (kg/ha)	
Yeelanna	Wheat	99	Lentil	4.0	76	
Lock	Vetch	119	Canola	1.5	85	
Minnipa	Wheat	186	Canola	1.1	176	A.
Cootra	Wheat	71	Wheat	3.4	23	-
Pinkawillinie	Wheat	119	Barley	2.9	16	1
Wharminda			geland ?		17	

- LEP has a unique combination of soils and climate.
- Some gaps in our knowledge include our ability to predict N losses and mineralisation.
- Proof-of-concept model for mineralisation predictions for EP.
- Recent improvements in soil water and yield potential predictions.
- In-season N strategies need to be tailored to our knowledge of soils and yield potential.
- We are exploring approaches that combine legume and fertiliser management to better 'bank' nitrogen.
- While soil water is higher this year, starting nitrogen will depend on soil, history and rain events.

Thankyou

To our funders, collaborators in the project team, RIG and landholders

N budgeting-Cootra

	ASSUMPTIONS					OUTPL	JT				
	Wheat N		Urea	Carry	Climate	LtAvg	Diff froi Dec 1 G Diff fro		BCR	BCR	
	\$/t	\$/kg	\$/t	over		P Bdgt	standar P Budg	standa	1\$/\$	%>1	%>2
Original Jul-21	\$300	\$1.80	\$828	0%		\$ 192	-\$ 101		\$ 2.32	76%	58%
N=\$2.50	\$300	\$2.50	\$1,150	0%		\$ 139	-27% -\$154	-\$ 53	\$ 1.71	68%	46%
N=\$3.00	\$300	\$3.00	\$1,380	0%	Ă	\$ 102	-47% -\$ 191	-\$ 90	\$ 1,43	64%	38%
Carryover N 35%	\$300	\$1.80	\$828	35%	Č	\$ 211	10% -\$ 57	\$ 44	\$2.45	81%	61%
Carryover N 70%	\$300	\$1,80	\$828	70%		\$230	20% -\$ 14	\$87	\$ 2.59	88%	64%
Incr odds wet	\$300	\$1.80	\$828		C	\$ 241	26% -\$ 101	\$-	\$2.66	81%	68%
Incr odds dry	\$300	\$1.80	\$828	0%	Ĭ	\$ 130	-32% -\$ 101	\$-	\$ 1,89	62%	43%

Hayman et al.