
 

1 

 

 

Mapping soil Available Water Capacity spatially and temporally across 

the Adams’ farm near Ungarra, Eyre Peninsula 
 

Mark Thomas1, Damian Mowat1 and Jacob Giles2 

 
1 CSIRO Agriculture and Food, Waite Campus; mark.thomas@csiro.au 
2 EP Ag Research, Port Lincoln 

 

Background 

Dan Adams’ farm, which is located near Cockaleechie and Ungarra on the Eyre Peninsula (EP), 

participates in the Resilient EP Smart Farms project by contributing one of the ‘focus paddocks’ known 

as “Tank”. This paddock had a soil moisture probe installed in the ground during 2016. 

 

Dryland farmers increasingly turn to soil moisture information to reduce decision-making uncertainty 

and maximise production opportunity for profit. Key decision support areas include strategic, 

including what to sow and when, as also tactical decisions including in-season choices like when (… or 

if) to apply N, or to market grain with increased confidence.  

 

Soil moisture probe output can only be considered reliable for soils proximal to the sensor; strictly 

speaking the instrument is calibrated to that soil and that soil only. This is because soils vary spatially 

and with depth so simple extrapolation of sensor data from one site (soil) to another is problematic; 

the nature and rate of change is sometimes hard to predict with reliability, especially in landscapes 

that have complex soil arrangements.  

 

Of all the soil components that contribute most to moisture retention in soils (e.g. available water 

capacity, AWC1), clay content in typical agricultural soils is the most dominant factor and so the 

patterns can have a very strong influence on soil-landscape variability. In practical terms this means 

that without advance knowledge on the farm soils, reliability of soil moisture sensor information 

diminishes and devalues at an unknown rate with increasing distance from the probe. To counter this, 

in an ideal world the farmer would deploy an array of sensors to cover a multitude soils that are 

probably present. However, because soil moisture sensors are not cheap, cost consideration shapes 

usage and so many farmers opt for a single on-farm installation. 

 

The famer/advisor is then faced with the choice of where that sensor should be deployed. This 

decision is often built around accumulated knowledge of soil/yield patterns. Therefore the rationale 

for ‘optimal’ deployment may fall on the farmer’s interest in the consistently best-, worst- or average-

performing soils – or some other criteria important to the farmer. However, the ‘optimal’ is rarely 

 
1 The term AWC can often be used synonymously with plant available water capacity (PAWC). The PAWC 

estimate technically relates to the soil water availability for a crop-type for the whole rooting depth and 

integrates soil constraints like salinity and pH. In this pilot AWC is estimated for ≤ 1 m soil depth (depending on 

depth of soil core refusal and regardless of rooting depth) and does not integrate constraints. 
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achievable because of practical constraints to installation since on the working farm sensors can rarely 

be positioned far from the edge of the paddock to minimise disruption to farm operations. For 

example, the sensor control unit and peripherals need to be outside the cropped area to not disrupt 

operations traffic and to give unfettered access for checking and maintenance and deploying the 

sensor close to the edge of the paddock minimises disruption to crops if the senor needs to be 

accessed. 

 

The purpose of this pilot study is to, firstly, map at mapping a granularity (~ scale) helpful to farming 

decision-making the AWC of soils across the whole of Adams farm using a modern soil mapping 

approach called digital soil mapping (DSM), and then secondly, use the soil moisture signal from the 

Tank soil moisture sensor to estimate by extrapolation the volumetric water content of soils across 

the farm. Were this to be reliable, the methodology could be used to assist at other farms that have a 

soil moisture sensor to support whole-of-farm farmer strategic and tactical decision-making. In itself, 

the AWC farm map will be a useful addition to the farmer’s decision-making tool kit. The pilot study 

only draws off nationally available datasets so that if prospects for success are good it will be possible 

to extend the approach elsewhere.  

 

Farm soils 

The Adams farm boundary is presented in Figure 1. The cropped area of the farm covers approximately 

400 Ha in an upland setting, and the landscape is characterised by low hills featuring low relief patterns 

of hillcrests, hillslopes, drainage depressions and footslopes. The soils are derived from very old 

Paleoproterozoic era intrusives rocks (gneissic granites and granodiorites) and much more recent - 

though nonetheless still old - Cenozoic era residual sediments from past alluvial deposits covering 

much of the present-day high ground. These deposits are subject to in-situ weathering. The source 

materials result in well-structured soils that are often rich in clay with texture contrast and 

gradational-type profiles, although lighter loam soils may also be present. The influence of weathering 

means that some soils contain ironstone gravels. Some soils derived from the intrusives may be rich 

in grit in layers or throughout the profile. In places a shallow (0.2 - 0.3 m) calcrete restricts soil depth, 

or the soils contain appreciable amounts of calcrete gravels and stones. Away from these areas soil 

depth is generally not restricted to a depth ≥1 m. Subsoils on the farm are typically alkaline (some very 

alkaline) and some may be sodic – particularly soils influenced by weathering of the intrusives.  
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Figure 1 Adams farm extent including paddock boundaries (red lines) and artificial hill shading added to accentuate relief 

patterns 

Methods 

The first stage of the methodology involves devising a soil survey that is both pragmatic and efficient; 

efficient in terms covering the full range of soils in the farm soil-landscape within survey constraints. 

In-field sampling methodology is also described. The analytical suite of samples is described. Next, the 

DSM approach is discussed, including the evaluation of results. Finally, we discuss extrapolation and 

assessment of soil moisture signal from the Tank probe across the farm.  

 

Survey design and soil sampling 

Conceptual background 

The key objective of soil survey design is to cover as much as possible of the soil continuum (i.e. variety, 

or types) in the study area with as little bias as possible. In practical operational terms, bias introduces 

inefficiencies in terms of over-sampling soils at the expense of others. Technically, bias skews surveyor 

(mental) and computer models by not equally covering – or even missing– important soils during 

formulating predictive models. 

 

A survey comprising 25 sites was envisaged the maximum achievable during a working a working day. 

However, given the likelihood of attrition of sites because of access problems or running out of field 

time, a balance of >20 sites achieved was deemed acceptable enough to offer a reliable coverage of 

farm soils. Achieving 20 over the 400 Ha of farmland gives a sampling intensity of one sample per 20 

Ha. This sampling intensity equates to moderately high (detailed) intensity survey (e.g. a sampling 

point support consistent with 1:25,000 scale mapping) and considered useful for farm planning 

(Gallant et al., 2008).  

 

There are numerous survey design approaches (McKenzie et al., 2008) including surveying at expertly 

selected sites, on a grid or at random site. One method that ‘forces’ the design to cover the soil-
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landscape continuum applies stratification, which separates the soil-landscape based on clusters of 

‘similarness’ and distributing the chosen number of sampling points equally within each 

cluster/stratum.  

 

One effective method of clustering to define strata applies environmental correlation. This approach 

applies the principle that certain GIS layers relating to soils and landscapes spatially correlate to soil 

properties, i.e. they are soil property covariates. For example, the thorium (Th) gamma radiometric 

layer is a covariate for weathered soils; strong Th signals can therefore indicate the presence of 

deeper, less fertile soils (Wilford et al., 1997). Similarly, topographic wetness index (TWI) terrain 

analysis (Wilson and Gallant, 2000a) indicates patterns of water flows and persistence, hence is a 

covariate for soil thickness, soil hydrology and soil texture. Slope can serve as a covariate for soil depth. 

Covariates are discussed in Table 1. 

 

Computer k-means analysis is an established method in soil survey for creating a map of k-number of 

statistical clusters from a coregistered stack of covariates (Burrough, 1989). The main principles of k-

means analysis are that (i) ‘k’ is an operator-determined number of clusters, and (ii) each k-means 

cluster generated is equally statistically variable – or discrete – as each of the other clusters. In 

practice, because clustering is based on covariates, all the user knows is that each cluster represents 

a coherent set of soil properties in the landscape, but what those properties are is not necessarily 

understood i.e. the cluster map is not a soil classification. However, expert visual coregistration of the 

cluster map with covariates in GIS can be a useful way of conceptually determining a range of general 

soil properties of clusters. The user-attribution of k is best done iteratively with expert knowledge 

guidance, and starts by matching a known level of soil-landscape complexity with a suitable number 

for k. For example, a non-complex landscape situation is likely to be better served by a small k whereas 

a complex situation may be better served by a larger k as there is more soil variability (i.e. types of 

soils) present. 

 

Sources of covariates 

Consistent with pilot objectives of ensuring that methodology can be extended throughout EP without 

barriers, covariates were derived from Australian public databases. The majority of covariates were 

collected from the Soil Landscape Grid of Australia (SLGA; Grundy et al., 2015) and the Sentinel remote 

sensing mission (Torres et al., 2012). The GIS rasters were unified to a 20 m ground resolution, and 

the SLGA’s digital elevation model (DEM) used to derive additional terrain attributes if not already in 

the suite. 

 

Implementing k-means clustering 

The pilot used the freely available and powerful Quantum GIS (QGIS) GIS program 

(https://www.qgis.org/en/site/). This GIS supports the PAT (Precision Agriculture Tool) plugin 

developed by CSIRO (Ratcliff et al., 2020) that is also freely available. k-means clustering is part of one 

of the PAT modules and used in this pilot.  

 

Numerous clustering iterations were implemented in PAT and assessed qualitatively and informed by 

field experience gained during a field reconnaissance and auxiliary information, including remote 

sensing, soil data, publications (Hall et al., 2009) and soil mapping (Maschmedt, 2000). The output 

considered the best representation of soil patterns was a 4-cluster solution shown in Figure 2, which 

was achieved using the 7 covariates presented in Table 1.  
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Table 1. Covariates, examples of soil property proxies/covariances and usage. Ticks indicate usage in the pilot. 

Covariate Examples of soil property 

proxies/covariances 

Pilot usage 

Clustering Digital soil 

mapping 

Radiometric K Shallow(er) or rocky soils; 

rocks derived from shallow 

underlying geology (Wilford et 

al., 1997) 

ü ü 

Radiometric Th Deep(er), low fertility 

(leached) soils (Wilford et al., 

1997) 

ü ü 

Weathering Intensity 

Index 

Separating deeply weathered, 

residual soils from shallow, 

unweathered soils (Wilford, 

2012) 

ü ü 

Focal Mean 300 m Land surface relief patterns 

from an intermediate sized 

300 m neighbourhood. 

Extenuates changes in slope 

and landform. 

ü  

Prescott Index Identification of soil leaching 

based on climate (aridity) 

moderated locally by slope 

aspect; high index values 

indicate poorly leached soils 

and possible presence of 

subsoil pans (Prescott, 1950) 

ü ü 

Topographic Wetness 

Index 

Areas of water accumulation 

and slow soil water 

transmission (leached, 

waterlogged/wet soils) and 

areas of water shedding (drier 

soils) (Gallant and Austin, 

2012) 

ü ü 

Slope Shallow(er) versus deep(er) 

soils (Wilson and Gallant, 

2000b) 

ü  

Kaolin mineralogy Weathered soils  ü 

Smectite mineralogy  Fresher soils  ü 

Illite mineralogy Fresher soils  ü 

Sentinel satellite short 

wave infrared (VV 

polarisation) 

Land use and near surface soil 

moisture 

 ü 

Sentinel satellite short 

wave infrared 2 (VH 

polarisation 

Land use and near surface soil 

moisture 

 ü 

Geology Multiple soil attributes like 

mineralogy, texture 

 ü 
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Figure 2. Adams farm 4-cluster  k-means clustering solution. Planned sampling sites are shown (white dots) 

An analysis of distribution of preliminary core AWC results2 sub-setted according to the 4 clusters 

shown in Figure 2 taken at the sampling points is shown in Figure 3. This shows that apart from the 

cluster 4 (blue) that straddles all cluster distributions of AWC and a similar median to cluster 3 (yellow), 

the remaining clusters show reasonable separation. This indicates in terms of the AWC attribute at 

least, the survey design appears to have adequately fulfilled the objective of covering a variety of soils 

on the farm. 

 
Figure 3. Boxplots of AWC size distributions at sampling points grouped by coloured cluster, as shown in Figure 2 

Finding sampling sites 

The method to select the 25 candidate survey sites involved distributing a proportionate amount of 

sites based on the area of land for each cluster. In this way cluster 1 was allocated 5 survey sites; 

cluster 2, 5 sites; cluster 3, 8 sites, and; cluster 4, 7 sites. Next, within these, sites were expertly 

 
2 Section: “Soil water retention and available water capacities” 
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assigned; wherever possible, sites were aligned into transects based on hillslope. Sampling in this way 

is beneficial in two ways: firstly, technical efficiencies are achieved by sampling down slope because 

soil variability is maximised tangential to slope. Secondly, practical efficiencies are achieved sequential 

sites being in closer proximity to one other ensuring field sampling time is maximised. 

 

Soil sampling 

A GPS was used to navigate to the sites shown in Figure 2. A 40-mm push tube corer was used to 

extract complete soil cores to a depth of 1 m or refusal. Two cores were collected at each site. The 

first was described at 0.2 m depth increments, each of which were bagged for physiochemical 

laboratory analyses. The second was divided into 0.1 m depth increments for laboratory water 

retention analysis (suction, pressure plate analyses). Twenty-two sites were achieved during the 

survey (Figure 4). 

 

 
Figure 4. Distribution of the 22 sampling sites as red dots. White buffered label show site IDs and non-buffered label reflects 

DSM estimated AWC. (DSM see “Digital Soil Mapping” section). The blue dot locates the Tank soil moisture probe and the 

field characterisation PAWC (yellow with black buffer) 

The Tank soil moisture probe is identified in Figure 4. The soil proximal to the probe has a field 

estimated PAWC of 182 mm. The probe is situated roughly equidistant from sampling sites DA14 and 

DA17 (80 and 120 m, respectively). DA14 has a DSM AWC estimate of 156 mm and DA17 has one at 

176 mm. The Tank probe’s PAWC is estimated to 1.2 m depth whereas the DSM estimates are to 1 m 

depth.  

 

Soil analysis 

Physiochemical 

The <2 mm fraction was analysed for a conventional suite of analyses on the 0.2 m depth increment 

samples. The analyses included pH, salinity (EC), Ca, Mg, Na, K, as well as texture. Texture was analysed 

using mid infra-red (MIR) scanning. MIR can often vary in accuracy depending on the strength of 

calibration, and in situations where prediction uncertainty was high, particle size analysis was used. 



 

8 

 

 

Soil water retention and available water capacities 

Available water capacity for the 0.1 m depth increment was analysed using methods in Cresswell 

(2002). The -15 bar pressure plate measurement is used to approximate the crop lower limit (CLL) and 

the -0.3 bar suction plate measurement is used to approximate the field drained upper limit (DUL). 

Conversion to volumetric water was estimated using bulk density data derived from a GIS intersection 

of the sampling points from the SLGA bulk density layers. Plots showing the upper (-0.3 bar) and lower 

(-15 bar) limits are shown in Appendix 1. The down profile AWC trends derived from the plate work 

are presented in Figure 8. 

 

A whole profile AWC (to 1 m depth) for each of the 22 soils sampled was calculated by summing the 

0.1 m increment AWC values and are shown in Figure 5. The mean AWC to 1 m depth for the value is 

199 mm, with a standard deviation of 85.7 mm.  

 
Figure 5. Whole profile (to 1 m) available water capacity for sampled soils 

Digital soil mapping  

The machine learning technique applies computer modelling to predict and map soil properties using 

DSM (McBratney et al., 2003). Many DSM approaches build and apply predictive models established 

from relationships between point-based soil observations (i.e. geolocated soil data) and covariates 

(McKenzie and Ryan, 1999), and are capable of predicting the distributions of soil properties at various 

depths. This pilot applied the commonly used “Cubist” algorithm implemented in the “DSMTools” app 

developed by CSIRO to remove adoption barriers. 

 

Model set-up has numerous user options. These include the suite of covariates, and the way model 

‘training’ is supported. Training is the process by which the predictive model is iteratively built from 

observations (i.e. the geolocated laboratory data from the sampling sites, here AWC) intersecting with 

values from the stack of covariates. The model is also tested, and there are two methods to do this. 

One option called ‘external’ validation is to withhold a selection (e.g. 20 %) of the observations, build 
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the model with the remaining 80 %, and then validate the model with the withheld 20 %. One 

drawback of external validation is the withheld data is ‘wasted’, i.e. does not contribute to model 

building. An alternative option is to use ‘internal’ validation, which randomly withholds a pre-set 

number of data points for validation (e.g. 20 %), builds the model with the remaining 80 %, tests 

against the 20 %, and then finally returns the 20 % back into the set of observations. The technique 

repeats this numerous times (e.g. tens to thousands of times) according to user preference. Statistical 

reliability is reported on accumulated results of each repeat. The benefit of internal validation is that 

all observations are used in model building as all are used in validation, ensuring all variability in the 

observations is used in both stages. Internal validation was used in the pilot. 

 

The most successful model was achieved using the covariates listed in Table 1 and set to apply a 80/20 

model build/validation split using the 22 site observations of AWC. The model build was repeated 50 

times. In terms of mapping reliability, the model achieved a R2 of 0.35 and a concordance correlation 

coefficient of 0.55. Concordance is perhaps the most informative quality metric because it reports the 

model quality in terms of the 1 to 1 observation/model result (Lin, 1989). A concordance value of 0.55 

suggests a moderately strong model. The results for each 0.1 m depth ‘slice’ AWC are presented in 

Figure 6 and Figure 7. A whole of profile AWC (to 1 m depth) (Figure 7) was created in the GIS by 

combining the 0.1 m depth increment AWC layers.  
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Figure 6. AWC predictions at various depth increments: (a) 0 - 01 m, (b) 0.1 – 0.2 m, (c) 0.2 – 0.3 m, (d) 0.3 – 0.4 m, (e) 0.4 – 

0.5 m, and (f) 0.5 – 0.60 m 
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Figure 7. AWC predictions at various depth increments: (a) 0.6 – 0.7 m, (b) 0.7  – 0.8 m, (c) 0.8 – 0.9 m, (d) 0.9 – 1.0 m, and 

(e) Whole profile to 1 m 

The Figures show that the depth slice predictions are in the range from approximately 6 mm to 60 mm 

AWC. Visually the figures show consistency in AWC patterns through the depth slices. The mapped 

zone with the greatest AWC is located that the centre of the northern boundary of the farm near site 

DA12. Figure 8 shows the traces created from the intersection of DSM depth slices at the sampling 

sites (also the model training sites). The DSM AWC trace at DA12 indicates a large and increasing AWC 

values down the profile, and an AWC profile form unlike any other of the plots. Lower AWC values are 
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associated with the south and eastern farm zones where there were shallow soils were observed at 

DA19, DA21 and DA22. Figure 7 (b) shows that there is a consistent increase in AWC in the 0.7 – 0.8 m 

depth slice across the farm. The whole profile AWC shown in Figure 7 (e) shows the range of AWC 

values in the 70 – 520 mm range. Notably, mapped whole profile AWC values >350 mm (Figure 7 (e)) 

are unrealistic, especially given the analysis in this pilot is limited to 1 m deep soils. The DSM modelling 

to produce the unlikely profile form and AWC size represented at DA12 in Figure 8 is a good example 

of where the model has not performed well. 

 

 
Figure 8. Comparison of down profile DSM and laboratory AWC values 

Figure 8 shows the DSM traces are ‘generalised’ down-profile compared to the laboratory traces. The 

variance between the DSM and laboratory data at each depth increment (n = 201) is also summarised 

in the scatter plot in Figure 9, which shows a very weak correlation (R2 = 0.043) between the two 

datasets. This weak relationships follow in Figure 8 with the DSM derived traces being generalised (i.e. 

straighter) down profiles. The DSM traces reflect that many soils had lighter textures (i.e. smaller AWC) 

in topsoils with heavier clayey subsoils. 
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Figure 9. Scatter plot comparing predicted DSM AWC values against laboratory AWC values from each site and depth layer 

Extrapolating moisture signal 

The final phase of the pilot involved testing the use of signal from the Tank soil moisture probe to 

predict the AWC elsewhere on the farm at various times from the DSM. This method works under the 

premise that soil moisture information from the soil moisture probe reflects the contemporary soil 

moisture status across the farm, and rainfall received does not vary to a significant degree over the 

farm. Soil moisture data from periodic samplings at 11 predetermined sites on the farm has been used 

to evaluate the extrapolation. 

 

Soil probe data 

Soil moisture has been collected at the Adams probe since 2016 and the probe was changed during 

March 2022. The cumulative soil moisture to 1 m depth for the period it was functioning is shown in 

Figure 10, accompanied by rainfall distributions from the nearby Yeelanna rainfall station. The soil 

moisture trace reflects quite well contribution of seasonal patterns of rainfall, noting however a 

separation of approximately 15 km between the farm and rainfall station and the influence on distance 

between the two. 
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Figure 10. Adams probe soil moisture estimation (to 1 m) to February 2022 (red trace) and rainfall from the nearby Yeelanna 

rainfall station (black trace) 

Soil moisture sampling 

Soil moisture measurements were collected at various depths increments (0 – 0.1, 0.1 – 0.2, 0.2 – 0.4, 

0.4 – 0.6, 0.6 – 0.8, and 0.8 – 1.0 m) from 11 fixed locations on the farm shown in Figure 11. These 

sites were sampled during 11 May 2021, 30 September 2021, and 2 February 2022 and moisture 

measurements made in the laboratory. These were converted to volumetric soil measurements for 

each depth increments using bulk density estimates derived through GIS intersection of the bulk 

density mapping from the SLGA.  
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Figure 11. Periodic soil moisture sampling sites (white dots) and DSM sampling sites (red dots) 

Using the soil moisture probe to modify DSM AWC 

Whole farm whole profile (1 m) water at soil moisture sampling dates was estimated by applying the 

contemporary Tank probe signal to the whole farm AWC DSM in Figure 7 (e). This modifier was derived 

from a normalised3 multiplier and applying the modifier from the date to the AWC DSM. Figure 12 

shows a comparison on values taken from soil moisture sampling sites in Figure 11. The comparisons 

are shown in Figure 12, which shows a weak relationship (R2 = 0.19, all dates combined) between the 

field soil moisture measurements and modified AWC. 

 
3 (x – minimum)/range, values of 0 - 1 
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Figure 12. Scatter plot comparing modified soil moisture from DSM AWC with soil moisture from field sampling. The three 

dates are shown and best fit line for combined date comparisons 

Conclusions and recommendations 

The pilot project applied soil-landscape principles to formulate a non-bias and efficient soil sampling 

design to survey the Adams farm. The soils were sampled at 22 sites at both 0.1 and 0.2 m increments 

to 1 m depth. Using laboratory methods available water capability (AWC) was measured for each 0.1 

m depth increment.  

 

The 10 cm AWC increments were used to model AWC for the whole farm at a 20 m ground resolution 

using computer machine learning digital soil mapping (DSM). Based on the soil survey intensity alone, 

this mapped output is consistent with a semi-detailed intensity of soil survey, which equates to 

approximately 1:25,000 scale mapping, placing the utility of output at the end range of moderately 

intensive uses at “field level” according to Gallant et al. (2008). While this may not support tactical 

farm decision-making one would expect at the level of precision agriculture (Jochinke et al., 2007), the 

AWC map gives an appreciation of within paddock variation offering a new level of farmer 

support/appreciation/understanding - and of course inter-paddock variation. The model delivered a 

Lin’s coefficient of correlation of 0.55 indicating a moderately strong model for AWC across the farm. 

However, when the 0.1. m AWC increments were compared with the laboratory data it was found 

that there was weak relationship (R2 = 0.043).  

 

The Tank probe soil moisture data was used to predict whole farm soil moisture at times 

corresponding to various field measurements of soil moisture. This was done by normalising the probe 



 

17 

 

data at a 0 – 1 range, and applying the modifier from the sampling date to the whole of farm DSM 

AWC mapping. A weak relationship (R2 = 0.19) was found. 

 

In conclusion, by any measure, the reliability of outputs from each stage of the pilot study have been 

variable. There are several ways that errors could be addressed at each of the important stages, 

including assurance that: 

• The soil survey design was not optimal, and not all representative soils were sampled.  

• The DSM approach was not optimised well; other user configurations and approaches could 

be tested. 

• The SLGA covariates that were used for DSM prediction were not capable of adequately 

representing covariance in soils. This may be a factor of thematic quality of the SGLA layers 

or a mismatch between native raster resolution and inherent soil variability. 

• The Tank soil moisture probe has had known problems and was replaced once during the 

span of the study. The probe may also have been placed in a soil that for one reason or 

another does not represent well the soil moisture dynamics of the other farm soils. 
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Appendix 1 
Gravimetric moisture contents of soil profiles to 1 m depth (or core refusal) from laboratory pressure 

and suction plate analyses. Red line approximates crop lower limits (CLL) and blue line, the drained 

upper limit (DUL).  
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